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Boundary-value problems in the kinetic theory of gases. 
Part 2. Thermal creep 

By M. M. R. WILLIAMS 
Nuclear Engineering Department, Queen Mary College, University of London 
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The effect of a temperature gradient in a gas inclined a t  an angle to a boundary 
wall has been investigated. For an infinite half-space of gas it is found that, in 
addition to the conventional temperature slip problem, the component of the 
temperature gradient parallel to the wall induces a net mass flow known as 
thermal creep. We show that the temperature slip and thermal creep effects can 
be decoupled and treated quite separately. 

Expressions are obtained for the creep velocity and heat flux, both far from and 
at  the boundary; it is noted that thermal creep tends to reduce the effective 
thermal conductivity of the medium. 

1. Introduction 
In a recent publication (Williams 1969, referred to as I) we have presented 

a general technique for solving boundary-value problems in gas-kinetic theory. 
The method was illustrated by application to the problem of slip flow in a half- 
space, i.e. the Kramers problem. We now wish to apply our technique to a problem 
involving a combination of temperature and velocity gradients and will therefore 
consider a generalization of the usual temperature jump problem (Welander 
1954). 

The problem under consideration is that of a half-space (z > 0)  filled with 
B rarefied gas and bounded in the plane z = 0 by a wall. A temperature gradient 
is maintained in the gas; however, unlike the usual temperature jump problem, 
the gradient is not normal to the wall but inclined to it at  some angle. Thus the 
gradient is defined by its two components d T l d x  normal to the wall, and dT1d.z 
parallel to the wall. 

When linearized about a local Maxwellian, the Boltzmann equation assumes 
a form for which the solution may be shown to decouple; one part describing the 
normal temperature jump condition, the other describing a phenomenon known 
as thermal creep. The latter effect is explained in detail by Kennard (1938) who 
shows that at any differentially heated boundary there exists a tendency for 
a gas to move along the surface from colder to hotter regions. In  enclosed vessels 
this effect is known as thermal transpiration and has been studied recently in 
some detail by Sone & Yamamoto (1968), Loyalka (1969) and Williams (1970). 
A classic example of thermal transpiration in the Knudsen limit is the porous 
plug experiment (Kennard 1938). For enclosed vessels a ‘back pressure’ is 
generated which induces Poiseuille flow as well as thermal creep; since these 



760 M .  M .  R. Williams 

effects act in opposite directions an interesting competition takes place which, 
under certain conditions, can be arranged to give zero net flow of gas. However 
in the half-space problem considered above, we shall assume that, asymptotically, 
the pressure is constant and this will lead to a pure thermal creep velocity. 

Our results for the thermal creep velocity are quite new, whilst those for the 
temperature jump lead to equations which have been solved by Loyalka & 
Ferziger (1968) and by Loyalka (1968). As two special cases, we employ the 
B.G.K. model of scattering, with constant collision frequency and constant 
collision cross-section, to calculate the thermal creep velocity and heat flux. 
Also, comparison is made with the simple kinetic theory results of earlier workers. 

2. Basic theory 
The Boltzmann equation may be written in the form 

v .  V ( V ,  r) = f i f ( f , f , )  ( 1 )  
as explained in I. 

An implicit assumption in our work on rarefied gases is that any perturbations 
from the equilibrium Maxwellian distribution must be small. Thus we look for 
solutions to ( 1 )  in the form 

f(v, r) = f O P ,  r) { 1 + w, .)>, (2) 

where fo(v, r) is the local Maxwellian and h(v, r) is, in an average sense, small 
compared with unity. 

The co-ordinate system is defined so that x is the distance measured normally 
from the wall and z is the distance measured along it; we can therefore define our 
local Maxwellian in the following manner : 

where 

and 

together with the relation nkT = p = constant; this gives 

(4) 

where no and To are convenient reference values of density and temperature 
(To + T,z is the wall temperature). 

The subscript x or z indicates a gradient with respect to that variable. 
Linearizing f0(v, r) for small values of nx/no, %,/no, Tx/To and T,/To, and using 

(6), leads to the following expression for fo(v, r) : 

where Kx = Tz/To and I<, = q / T o  are constants. 
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Inserting (2) and (7) into the Boltzmann equation (1)  and neglecting second- 
order terms, lead to the following equation for h: 

= /dc‘K(c, c‘) e+”h(c’, x ) .  (8) 

In  (8 ) ,  the collision frequency is V(c)  and the scattering kernel is K(c,  c’), also 

Now we change to polar co-ordinates as described by figure 1 of I. Defining 
we have so normalized the velocity that c = v(m/dkT,)*. 

we see that (8) decouples for the two quantities g and p .  
It is found, in fact, that 

where the expansion of K(c ,  c’) in associated spherical harmonics has been 
employed as explained in I. 

Associated with (8) is the following boundary condition at  x = 0: 

for p > 0 and 0 < x < 2n. In  (13) we assume a mixture of specular and diffuse 
reflexion of molecules from the surface; P is the proportion of particles under- 
going perfect accommodation. In  terms of g and p ,  (13) becomes 

g(c,p, 0) = (1 -P)g(c ,  -p, 0) (14) 

forp > 0. 
We shall return to these equations after defining some quantities of interest. 
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3. Macroscopic variables 
The component PZz of the pressure tensor is defined as 

which in terms of g may be written 

If now ( 12) is multiplied by c3 exp ( - c2) ( 1 - pz) 3 and integrated over c( 0, co) 
and ,u( - 1 ,  l), we find that 

and hence that P,, = constant. The value of this constant will be obtained below. 
The mean flow velocity q(x) (ie. the creep velocity) in the x direction is given by 

where it should be remembered that q is in units of ( 2kTo/m)*. 
The heat fluxes Q,(z) and Qz(x) in x and z directions, respectively, are given by 

If now (1 1) is multiplied by c4 e-ca and integrated over c(0, co) and p( - 1, I ) ,  we 
find that 

J'0a~cc5e-c2j1 dppp(c,p, x) = constant (21) 

and hence Q,(x) = constant, the value of which will be found below. It does not 
appear possible to obtain any simple relationship for Qz(x) which will have to be 
calculated in the same manner as q(x). 

-1 

Findly, the number density of the gas, N ( x ,  x ) ,  is given by 

and the temperature $(x, z )  by 

It is clear from these definitions that (1 1) and ( 1 2 )  describe the phenomena of 
temperature jump and thermal creep respectively. Moreover, because of the 
simple boundary conditions employed there is no interaction between the two 
phenomena, which proceed independently. For a more general boundary condi- 
tion this will not always be the case. 
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4.1 .  Asymptotic solution 4. Thermal creep 

Let us consider equation (12) for thermal creep and note that the following 
expression is an acceptable solution: 

g ( c , p , x )  = A,c(l  -pZ)*-K,ca(c) ( 1  +):-P(C,p,x:),  ! 2 4 )  

where A ,  is a constant and a(c)  satisfies the Chapman-Enskog thermal con- 
ductivity equation, i.e. 

- c(c2 - Q )  + c V ( c )  a(c)  = dc‘ c’3 e-c’’lil(c, d )  a(c’), ( 2 5 )  

( 2 6 )  where /omdcc4e-c~a(c) = 0. 

The function p is termed the transient solution and will tend to zero rapidly 
as x: moves away from the boundary point. The particular form of the solution 
given by (24) can therefore be thought of as the sum of an asymptotic part 
(i.e. the first two terms of the right-hand side) and a transient. If (24) is inserted 
into (17), we find that 

/Om 

and since this must be true for all x it is clear that the constant, and hence P,,, are 
zero everywhere. 

Similarly, inserting (24)  into (18), we find 
1 

(28) 

from which we may conclude that the asymptotic creep velocity qasy is given 
by +A,. 

We shall consider the solution of (12) only for the case p = 1, i.e. purely diffuse 
reflexion. The extension to the more general case follows from the methods 
described in I and can be readily carried through. However, the case /3 = 1 has 
the advantage that an explicit expression for q(x) may be obtained. 

q(2)  = .+Ao- - /mdcc3e -“ /  1 dp(1 -/L2)+p(c,pL,z), 
Jn 0 -1 

We can also write for the heat flux QB(z) : 

For x sufficiently large, the contribution to Q, from p becomes negligible and 

(30) 
we can write &,(a) = QP” = +pqasu - A ,  dT ldz ,  

where now we have written qasU in absolute units, and A, is the coegcient of 
thermal conductivity, defined by 
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We see, therefore, that the rate of heat flow in the direction of decreasing 
temperature is reduced by the mass transport arising from thermal creep. We 
shall later calculate qasv to find the magnitude of this effect. 

4.2. Xolution of the equation for thermal creep 

If (24) is inserted into (12) and use made of (25), we find that p(c, p, x) is given by 

1 
Pf’)(p) I mdc’ cr2 e-@ K,(c, c’) 1 d/dPjl)(p’) p(c’ ,  p’, x) (32) 

0 -1 

subject to the boundary condition (for p = 1)  of 

p(c,p,O) = A , c ( l - p ~ ) ~ - * K , c a ( c ) ( 1 - p 2 ) ~  (p > 0). (33) 

The procedure is now identical with that described in I. We use the Wiener- 
Hopf technique, with the generalized B.G.K. model for K 1 ( c , c ’ ) ,  and for the 
p * ( c , p ,  0 )  of ( 3 7 )  of paper I we use the right-hand side of (33). Then, employing 
(A 2) of I, we obtain 

where the symbols in ( 3 4 )  are defined in I. The important point to note is that 
A,  is given explicitly in terms of quadratures. 

Knowledge of A ,  enables us to calculate all asymptotic properties of the gas 
exactly. It is also possible to obtain the detailed spatial variation of the flow and 
heat flux in the neighbourhood of the wall by inverting the appropriate Laplace 
transform. However, we shall not present the results here but simply note that 
q(x) can be written in the form 

I ( t )  being a rather complicated function. Asimilar expression is obtainedfor &,(x). 
We can observe from this functional form that the asymptotic state is reached 
within about two maximum mean free paths from the boundary. 

Fortunately, we canobtain a concise expression for the values of q( 0) and &,( 0) so 
that an adequate picture of the spatial variation of q and Q, may be constructed. 

Using (1  8) and (20) for x = 0, and the relation between the $(c, p )  functions, we 
find that 
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4.3. Application to limiting cmes 

The two limiting cases that we shall consider are those of constant collision 
frequency, V(c) = A, and constant cross-section, V(c)  = cX. In  both cases a(c) is 
obtained from the B.G.K. model. First, therefore, we must solve (25) for 
K,(c, c f )  = yccf V(c) V(c’). The equation for a(c) is 

and its general solution is 
afc) = a0 + (c2 - +)/ V(C), (39) 

where the arbitrary constant a, arises from the fact that the homogeneous 
equation has a non-trivial solution. a, is obtained from (26), whence 

For constant collision frequency 

a(c) = ( l / h )  (C”-p), (41) 

whilst for constant cross-section 
2 c2--6 

a(c) = - 
3Z&+ (2). 

We can evaluate the integrals in (34), (36) and (37), for constant collision 
frequency, by changing from polar co-ordinates in c back to Cartesian ones. 
Then we find that relation (A 1) of I becomes 

Care must be exercised here in view of the fact that Zmin for the constant 
collision frequency model is zero. We find that the limit must be taken after the 
various integrals have been evaluated. 

In  terms of the Cartesian co-ordinates, the expression for A, becomes 

After repeated use of (43) we obtain finally 

where [ A  = r~ is the slip coefficient defined in I. 
The asymptotic velocity is therefore given by 

In absolute units we may write qasy in terms of the B.G.K. viscosity p,, as 
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where R is the gas constant and p the pressure. The factor in brackets is calcu- 
lated as 0.7662 which is very close to the classical value of $ obtained by Kennard 
(1938) who used a less rigorous approach. 

It may be more appropriate, in view of the fact that the creep velocity is 
induced by a temperature gradient, to write qasu in terms of the B.G.K. 
conductivity. In  that case we find 

The surface velocity q(0) is givenin terms of Cartesian co-ordinates by 

and repeated use of (43) gives 

whence 

or 

K " l  
q(0)  = 2 (---) , 

2h 4 2  2 

We see therefore that the ratio qasY/q(0) cz 3-5 and hence there is a substantial 
velocity gradient in the neighbourhood of the surface. 

The asymptotic heat flux can be obtained from (48) and (30) and is given by 

dT 
Qasy = -(9-1 4 2 f l ) h T Z .  2 (53) 

Thus there is still a net heat flow in the direction of decreasing temperature but 
mass flow has the effect of reducing the thermal conductivity by a factor of 0.234. 

For &,(O) we can reduce ( 3 7 )  to the following expression: 

where f is a constant given by 

f = $ [ 1 # - 4 2 ( ~ - & ~ 2 ]  = 0.272.  (55) 

Thus the heat flux at the surface is not too different from that of the asymptotic 
value. 

Let us consider now the values of q and Q, for the constant cross-section model. 
In this case Cmin = Z and (A 1) of I reduces to 

1 
(56) 

ldPP(1-P2)  (1 +P)7-(WP) - - 4 L X + S P  3 (s + C) 7-(s) * 

In terms of 7-(C/p) we then find that 
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(58) 

The asymptotic flow velocity is therefore 

or, in terms of the corresponding viscosity and thermal conductivity, 

and 

The value of the velocity q(0) at the surface is obtained after repeated use 
of (56) as 

or 

and 

K 

5 ' p  RdT 
16 p dz 

9 p dz  

q(0)  = - A- 

q(0) = - - -. 
1 d T  

We see therefore that the ratio qasy/q(0) = 2. This ratio is evidently rather 

The asymptotic heat flux is obtained easily as 
sensitive to  the velocity dependence of the collision frequency. 

and, as in the case of constant collision frequency, indicates that the thermal 
creep reduces the effective conduction; in this case by a factor of 0.444, which is 
about one half of the effect noted earlier. 

For the surface value of Q , ( O )  we obtain from (37) and (56) the following 
expression: 

(66) 
2 dT 
9 dx 

&,(o) = --AT--. 

The conduction along the surface is therefore one half of its value in the main 
stream, which is in contrast to the result obtained from the constant collision 
frequency model. 

At first sight, the fact that conduction is smaller in the region of lower velocity 
is puzzling. On the face of it, we might expect that the mass flow would always 
have a smaller effect there. However, we must recognize that the behaviour of 
the gas at  the surface differs markedly from that in the free stream, in the sense 
that the former is in the Knudsen rdgime, and the latter in the hydrodynamic or 
Clausius limit. Thus in the Knudsen regime the conduction changes as well as the 
velocity and our results show that the extent to which this happens depends 
crucially on the velocity dependence of the mean free path. 
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5. Summary and conclusions 
It has been shown that the conventional temperature jump problem takes on 

additional complications when the temperature gradient is inclined a t  an angle 
to the boundary wall. Whilst the normal component of the temperature gradient 
leads to the expected behaviour, as described by Welander and others, the 
component parallel to the wall induces a net mass flow into the gas in the direction 
of increasing temperature. This phenomenon has been described by Kennard as 
thermal creep. 

The macroscopic properties of the thermal creep have been investigated and 
we have observed a large velocity gradient in the neighbourhood of the plate and, 
unlike slip flow or Poiseuille flow, the asymptotic velocity becomes spatially 
constant. Similar investigations have been made for the heat flux, which is found 
to be less than that expected in a stationary medium. It appears that the mass 
flow arising from thermal creep tends to reduce the heat conduction by a factor 
of between 2 and 4 in the asymptotic region and by a factor of about 4 at the 
boundary, depending on the velocity dependence of the collision frequency. 

Finally, we add that, whilst the asymptotic part of the solution of the 
Boltzmann equation employed in this work is exact, the transient part is not. 
The equation for the transient part of the solution is approximated by the B.G.K. 
model which is deficient in certain features. We have, in a previous publication 
(Williams & Spain 1970)) studied these deficiencies for the hard-sphere scattering 
model. Our results show that, for velocity perturbations (i.e. the creep-flow 
problem), the discrete eigenvalue spectra of hard-sphere and B.G.K. models are 
identical: namely, that there are no space eigenvalues, other than at  zero, which 
correspond to the conservation laws. On the other hand, for temperature varia- 
tions, the hard-sphere model discrete spectrum contains non-zero eigenvalues at 
rf: O-975Xmi,. This will cause an exponential term to appear in the solution which 
will decay less rapidly than the usual integral transient. The net effect is to 
increase slightly the thickness of the Knudsen layer for temperature problems. 
However, because the discrete eigenvalue is so close to the limit point, we do not 
expect this to have any serious consequences. The use of the velocity dependent 
B.G.K. model is therefore considered to be quite adequate. 

R E F E R E N C E S  

KENNARD, E. H .  1938 Kinetic Theory of Gases. McGraw-Hill. 
LOYALEA, S .  K. 1968 J .  Chem. Phys. 48, 5432. 
LOYALKA, S .  K. 1969 Phys. Fluids, 12, 2301. 
LOYALKA, S. K. & FERZIGER, J. H. 1968 Phys. Fluids, 11, 1668. 
SONE, Y .  & YAMAMOTO, K. 1968 Phys. Fluids, 11, 1672. 
WELANDER, P. 1954 Ark. Pys. 7, 507. 
WILLIAMS, M. M. R.  1969 J. Fluid Mech. 36, 145. 
WILLIAMS, M. M. R. 1970 Seventh Int. Symp. on Rarejied Gas Dynamics. 
WILLrms, M. M. R. & SPAIN, J. 1970 J .  Fluid Mech. 42, 85. 


